Insights into intrauterine growth restriction based on maternal and umbilical cord blood metabolomics – About Your Online Magazine


  • 1

    Baschat, A. A. et al. Predictors of neonatal outcomes in early-onset placental dysfunction. Obstet. Gynecol. 109, 253–261 (2007).

    PubMed
    Article

    Google Scholar

  • two

    Henriksen, T. Fetal nutrition, fetal growth restriction and health later in life. Acta Paediatr. Suppl. 88, 4-8 (1999).

    CAS
    PubMed
    Article

    Google Scholar

  • 3

    Pankiewicz, K. & Maciejewski, T. Perinatal mortality and morbidity of fetuses and newborns with growth restriction (own experience) – first report. Dev. Period Med. 21, 29–34 (2017).

    PubMed

    Google Scholar

  • 4

    Figueroa-Diesel, H., Hernandez-Andrade, E., Acosta-Rojas, R., Cabero, L. & Gratacos, E. Doppler changes in the main fetal cerebral arteries at different stages of hemodynamic adaptation in severe intrauterine growth restriction. Ultrasound Obstet. Gynecol. 30, 297-302 (2007).

    CAS
    PubMed
    Article

    Google Scholar

  • 5

    Biri, A. et al. Role of oxidative stress in restricting intrauterine growth. Gynecol. Obstet. Investig. 64, 187-192 (2007).

    CAS
    Article

    Google Scholar

  • 6

    Briana, D. D. & Malamitsi-Puchner, A. Intrauterine growth restriction and adult disease: The role of adipocytokines. EUR. J. Endocrinol. 160, 337-347 (2009).

    CAS
    PubMed
    Article

    Google Scholar

  • 7

    Devaskar, S. U. & Chu, A. Intrauterine growth restriction: Hungry for an answer. Physiology 31, 131-146 (2016).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 8

    Bamfo, J. E. & Odibo, A. O. Diagnosis and management of fetal growth restriction. J. Pregnancy 2011, 640715. https://doi.org/10.1155/2011/640715 (2011).

  • 9

    Hendrix, N. & Berghella, V. Non-placental causes of intrauterine growth restriction. Semin. Perinatol. 32, 161-165 (2008).

    PubMed
    Article

    Google Scholar

  • 10

    Reynolds, L. P. et al. Evidence of blood flow and placental vascularization altered in compromised pregnancies. J. Physiol. 572, 51–58 (2006).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 11

    Mandruzzato, G. et al. Intrauterine restriction (IUGR). J. Perinat. Med. 36, 277-281 (2008).

    PubMed
    Article

    Google Scholar

  • 12

    Sharma, D., Shastri, S. & Sharma, P. Intrauterine growth restriction: prenatal and postnatal aspects. Clin. Med. Insights Pediatr. 10, 67–83 (2016).

    PubMed
    PubMed Central

    Google Scholar

  • 13

    Alexander, G. R. et al. Neonatal mortality specific to gestational age / birth weight in the USA: 1995–1997 rates for whites, Hispanics and blacks. Pediatrics 111, e61-66 (2003).

    PubMed
    PubMed Central
    Article

    Google Scholar

  • 14

    American College of Obstetricians and Gynecologists. ACOG Practice Bulletin No. 134: Fetal growth restriction. Obstet. Gynecol. 121, 1122–1133 (2013).

    Article

    Google Scholar

  • 15

    Lin, G. et al. The metabolomic analysis reveals differences in the plasma metabolites of the umbilical vein between fetuses of normal swine and with restricted growth during the end of pregnancy. J. Nutr. 142, 990–998 (2012).

    CAS
    PubMed
    Article

    Google Scholar

  • 16

    Favretto, D. et al. Metabolic profile of umbilical cord blood in the restriction of intrauterine growth. Anal. Bioanal. Chem. 402, 1109-1121 (2012).

    CAS
    PubMed
    Article

    Google Scholar

  • 17

    Conde-Agudelo, A., Papageorghiou, A. T., Kennedy, S.H. & Villar, J. Novel biomarkers for predicting intrauterine growth restriction: A systematic review and meta-analysis. BJOG Int. J. Obstet. Gynaecol. 120, 681–694 (2013).

    CAS
    Article

    Google Scholar

  • 18

    Dessì, A. & Fanos, V. Myoinositol: A new marker of intrauterine growth restriction?. J. Obstet. Gynaecol. 33, 776–780 (2013).

    PubMed
    Article
    CAS

    Google Scholar

  • 19

    Priante, E. et al. Intrauterine growth restriction: a new view of the metabolomic approach. Metabolites 9, 267 (2019).

    CAS
    PubMed Central
    Article
    PubMed

    Google Scholar

  • 20

    Aravidou, E. et al. Protein expression in the brain of children of rats in relation to prenatal calorie restriction. J. Matern. Fetal. Neonatal. Med. 29, 2707-2714 (2016).

    CAS
    PubMed

    Google Scholar

  • 21

    Abd El-Wahed, M. A., El-Farghali, O. G., ElAbd, H. S. A., El-Desouky, E. D. & Hassan, S. M. Metabolic disorders in IUGR neonates detected at birth using UPLC-MS. Egypt. J. Med. Zumbir. Genet. 18, 281-287 (2017).

    Article

    Google Scholar

  • 22

    Nelson, D. L., & Cox, M. M. Amino acid oxidation and the production of urea. Inside Lehninger’s Biochemistry Principles 656–689 (Freeman, 2005).

  • 23

    Xu, Y., Williams, S. J., O’Brien, D. & Davidge, S. T. Hypoxia or nutrient restriction during pregnancy in rats leads to progressive cardiac remodeling and impairs post-ischemic recovery in adult male children. FASEB J. 20, 1251–1253 (2006).

    CAS
    PubMed
    Article

    Google Scholar

  • 24

    Newgard, C. B. et al. A metabolic signature related to branched-chain amino acids that differentiates obese from thin people and contributes to insulin resistance. Cell Metab. 9, 311-326 (2009).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 25

    Wang, T. J. et al. Metabolic profiles and the risk of developing diabetes. Nat. Med. 17, 448–453 (2011).

    PubMed
    PubMed Central
    Article
    CAS

    Google Scholar

  • 26

    Menni, C. et al. Biomarkers for type 2 diabetes and impaired fasting glucose using an undirected metabolomic approach. Diabetes 62, 4270–4276 (2013).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 27

    Dessì, A., Marincola, F. C. & Fanos, V. Metabolomics and the great obstetrical syndromes – GDM, PET, and IUGR. Best Practice. Res. Clin. Obstet. Gynaecol. 29, 156-164 (2015).

    PubMed
    Article

    Google Scholar

  • 28

    Human Metabolome Database: Displaying metabocard for 3-methyl-2-oxovaleric acid (HMDB0000491). http://www.hmdb.ca/metabolites/HMDB0000491.

  • 29

    Liu, J., Chen, X.-X., Li, X.-W., Fu, W. & Zhang, W.-Q. Metabolomic research in newborns with intrauterine growth restriction. Medication 95, e3564 (2016).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 30

    Nelson, D. L., & Cox, M. M. Glycolysis, gluconeogenesis, and the pentose phosphate pathway. Inside Lehninger’s Biochemistry Principles 521–559 (Freeman, 2005).

  • 31

    Human Metabolome Database: Displaying metabocard for Glycerol (HMDB0000131). http://www.hmdb.ca/metabolites/HMDB0000131.

  • 32

    Guo, X. et al. Glycolysis in the control of blood glucose homeostasis. Acta Pharmaceutica Sinica B two, 358-367 (2012).

    CAS
    Article

    Google Scholar

  • 33

    Bronisz, A., Ozorowski, M. & Hagner-Derengowska, M. Ketonemia pregnancy and fetal central nervous system development. Int. J. Endocrinol. 2018, 1242901 (2018).

    PubMed
    PubMed Central
    Article
    CAS

    Google Scholar

  • 34

    Powell, K. L. et al. Usefulness of the serum metabolic profile in the diagnosis of pregnancy complications. Placenta 66, 65–73 (2018).

    CAS
    PubMed
    Article

    Google Scholar

  • 35

    Cosmi, E. et al. Selective restriction of intrauterine growth in monochorionic twin pregnancies: markers of endothelial damage and metabolomic profile. Twin Res. Zoom. Genet. 16, 816–826 (2013).

    PubMed
    Article

    Google Scholar

  • 36

    Paolini, C. L. et al. Placental transport of leucine, phenylalanine, glycine and proline in pregnancies with intrauterine growth restriction. J. Clin. Endocrinol. Metab. 86, 5427–5432 (2001).

    CAS
    PubMed
    Article

    Google Scholar

  • 37

    Sanz-Cortés, M. et al. Metabolomic profile of umbilical cord blood plasma in neonates with early and late intrauterine growth restriction (IUGR) with and without signs of cerebral vasodilation. PLoS ONE 8, e80121 (2013).

    ADS
    PubMed
    PubMed Central
    Article
    CAS

    Google Scholar

  • 38

    Economides, D. L., Nicolaides, K. H., Gahl, W. A., Bernardini, I. & Evans, M. I. Plasma amino acids in fetuses appropriate and small for gestational age. I am. J. Obstet. Gynecol. 161, 1219-1227 (1989).

    CAS
    PubMed
    Article

    Google Scholar

  • 39

    Cetin, I. et al. Maternal concentrations and differences in maternal-fetal concentration of plasma amino acids in normal pregnancies and intrauterine growth restriction. I am. J. Obstet. Gynecol. 174, 1575–1583 (1996).

    CAS
    PubMed
    Article

    Google Scholar

  • 40

    Nagana Gowda, G. A. & Raftery, D. Quantitating metabolites in protein precipitated serum using NMR spectroscopy. Anal. Chem. 86, 5433–5440 (2014).

    CAS
    PubMed
    Article

    Google Scholar

  • 41

    Filntisi, A. et al. Automated identification of metabolites from 1H NMR spectra of biological fluid. Metabolomics 13, 146 (2017).

    Article
    CAS

    Google Scholar

  • 42

    Wishart, D. S. et al. HMDB 4.0: The human metabolome database for 2018. Nucleic Acids Res. 46, D608 – D617 (2018).

    CAS
    PubMed
    Article

    Google Scholar

  • 43

    Ulrich, E. L. et al. BioMagResBank. Nucleic acid res 36, D402 – D408 (2008).

    CAS
    PubMed
    Article

    Google Scholar

  • 44

    Ravanbakhsh, S. et al. Accurate and fully automated NMR spectral profile for metabolomics. PLoS ONE 10, e0124219 (2015).

    PubMed
    PubMed Central
    Article
    CAS

    Google Scholar

  • 45

    Tardivel, P. J. C. et al. ASICS: An automatic method for identification and quantification of metabolites in complex 1D 1H NMR spectra. Metabolomics 13, 109 (2017).

    Article
    CAS

    Google Scholar

  • 46

    Chong, J. et al. MetaboAnalyst 4.0: For a more transparent and integrative metabolomic analysis. Nucleic Acids Res. 46, W486 – W494 (2018).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • Paula Fonseca